

Connection Diagram

Functional Description

The 74ALVCH162374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each clock has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each

Truth Tables

Inputs			Outputs
$\mathrm{CP}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{0}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}} \mathrm{I}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial (HIGH or LOW, control inputs may not float)
Z = High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP
flip-flop will store the state of their individual I inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock $\left(\mathrm{CP}_{\mathrm{n}}\right)$ transition. With the Output Enable ($\overline{\mathrm{OE}}_{n}$) LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH , the outputs go to the high impedance state. Operations of the $\overline{\mathrm{OE}}_{\mathrm{n}}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

	Supply Voltage (V_{CC})
	DC Input Voltage (V_{l})
	Output Voltage (V) ((ote 2)
	DC Input Diode Current (IIK) $V_{1}<0 V$
	DC Output Diode Current (IOK) $V_{0}<0 V$
	DC Output Source/Sink Current ($\mathrm{I}_{\mathrm{OH}} / \mathrm{lOL}_{\mathrm{O}}$)
	DC V_{CC} or GND Current per Supply Pin (ICC or GND)
	Storage Temperature Range ($\mathrm{T}_{\text {STG }}$

-0.5 V to +4.6 V
-0.5 V to 4.6 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{IK}) $V_{1}<0 \mathrm{~V}$
DC Output Diode Current (IOK)
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$
DC Output Source/Sink Current
($\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$)
DC V_{CC} or GND Current per

Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 3)

Power Supply

Operating
Input Voltage (V_{l})
Output Voltage (V_{O})
1.65 V to 3.6 V

OV to V_{CC}
0 V to V_{CC}
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \quad 10 \mathrm{~ns} / \mathrm{V}
$$

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: l_{l} Absolute Maximum Rating must be observed, limited to 4.6 V . Note 3: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

AC Loading and Waveforms

TABLE 1. Values for Figure 1

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	V_{L}
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

FIGURE 1. AC Test Circuit

Symbol	V_{CC}			
Symbol	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.7 V	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{V}_{\text {mi }}$	1.5 V	1.5 V	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2$
V_{mo}	1.5 V	1.5 V	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2$
V_{X}	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
V_{Y}	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
V_{L}	6 V	6 V	$\mathrm{V}_{\text {CC }}{ }^{*} 2$	$\mathrm{V}_{\text {cc }}{ }^{*} 2$

FIGURE 2. Waveform for Inverting and Non-Inverting Functions

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
